Cette plateforme est basée sur les outils bioinformatiques associés à la base de données CAZy créée et mise à jour au laboratoire par l’équipe Glycogénomique.

La plateforme analyse des données génomiques et métagénomiques pour identifier les séquences correspondant à des enzymes d’assemblage (glycosyltransférases) ou de déconstruction des sucres complexes (glycoside hydrolases, polysaccharide lyases, carbohydrate estérases, activités auxiliaires). Nous proposons plusieurs niveaux d’analyse, de l’analyse automatique à la curation manuelle.

Accessibilité

Académiques et industriels

Coût

A définir pour les industriels en fonction du temps d’utilisation et de l’assistance nécessaires.

Comment faire une demande ?
Equipement spécifique
  • 1 HPC de 576 coeurs
  • 1 HPC de 64 cœurs
  • 4 calculateurs SMP à 64 cœurs

Publications citant notre plateforme

  • Hibberd MC et al. (2024) Bioactive glycans in a microbiome-directed food for children with malnutrition Nature. 625(7993):157-165
  • Zeng Q et al. (2023) Stable functional structure despite high taxonomic variability across fungal communities in soils of old-growth montane forests Microbiome. 11(1):217
  • Delannoy-Bruno O et al. (2022) An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome Proc Natl Acad Sci U S A. 119(20):e2123411119
  • Ostrowski MP et al. (2022) Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota Nat Microbiol. 7(4):556-569
  • Cabral L et al. (2022) Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides Nat Commun. 13(1):629
  • Delannoy-Bruno O et al (2021) Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans Nature. 595(7865):91-95
  • Chang HW et al. (2021) Gut microbiome contributions to altered metabolism in a pig model of undernutrition Proc Natl Acad Sci U S A. 118(21):e2024446118
  • Hagen LH et al. (2021) Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber ISME J. 15(2):421-434
  • Michalak L et al. (2020) Microbiota-directed fibre activates both targeted and secondary metabolic shifts in the distal gut Nat Commun. 11(1):5773.
  • Li J et al. (2020) A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment Gigascience. 9(6):giaa057
  • Strazzulli A et al. (2020) Discovery of hyperstable carbohydrate-active enzymes through metagenomics of extreme environments FEBS J. 287(6):1116-1137
  • Al-Masaudi S et al. (2019) A metagenomics investigation of carbohydrate-active enzymes along the goat and camel intestinal tract Int Microbiol. 22(4):429-435
  • Liang X et al (2018) Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times Biotechnol Biofuels. 11:243
  • Wong MT et al. (2017) Comparative Metagenomics of Cellulose- and Poplar Hydrolysate-Degrading Microcosms from Gut Microflora of the Canadian Beaver ( Castor canadensis) and North American Moose ( Alces americanus) after Long-Term Enrichment Front Microbiol. 8:2504
  • Seedorf et al. (2014) Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 1-14
  • Ridaura et al. (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214.
  • Floudas et al. (2012) The Paleozoic origin of white rot wood decay reconstructed using 31 fungal genomes. Science 336, 1715-1719
  • Ohm et al. (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathogens 8(12) : e1003037
  • Muegge et al. (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970-974